User Clustering with GPS Trajectories

Yan Wang

Dec. 8, 2011

Overview

- Introduction
 - Problem definition
 - Dataset
- Approach
 - Visualization and analysis
 - Preprocessing
 - Feature design
 - Visualization and analysis
 - Refined feature design
 - Clustering approaches
- Experiments
 - Abstract indicators
 - Visualization and analysis
- Conclusion
 - What I did
 - What I learned

Problem definition

User clustering with GPS trajectories

Problem definition

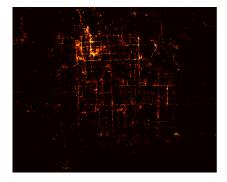
- User clustering with GPS trajectories
- It's important
 - Spatial-temporal data: general
 - Applications
- It's challenging
 - Spatial-temporal data: complex
 - Geographical data: rich context

Dataset

- GeoLife from Microsoft Research Asia
 - Latitude, Longitude, Timestamp, UserID
 - Large-scale
 - ▶ 167 users, 2 years, 17K+ trajectories, 1M+ km, 48K hours
- Subset in urban area of Beijing
- Why choosing GeoLife?
 - Suitable for the problem
 - Large enough

Approach

- Framework
 - Preprocessing
 - Feature extraction
 - Clustering
- ► Why?


What does the overall data look like?

- Problems?
 - Not informative enough!
 - More interested in *intentionally* visit

Preprocessing

Filter high-speed points

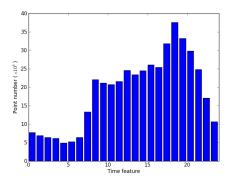
- Solution!
 - Noise filtered
 - Enough points preserved (4M+)


What does one user look like?

- Problems?
 - Outliers!

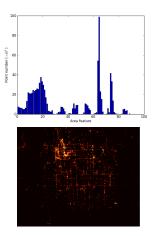
Preprocessing

Discard points inconsistent with local average

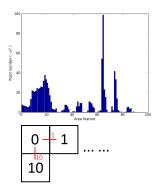

- Solution!
 - Smooth and reasonable trajectories

Feature extraction

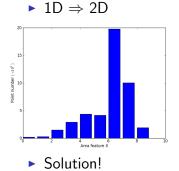
Intuition

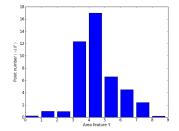

- Traveling time
 - Morning? Afternoon? Evening?
 - Hour in timestamp
- Traveling area
 - Northwest? Central?
 - 1 from 100 regions in Beijing
- Category
 - Restaurants? Bookstores? Shopping malls? Parks?

Traveling time



- Good
 - Reasonable
 - Balanced


- Traveling area
 - Right figure
- Very unbalanced
 - Why?
- Periodical
 - ► Why?
 - Problem of distance



- Traveling area
 - Right figure
- Very unbalanced
 - Why?
- Periodical
 - ► Why?
 - Problem of distance

Refined feature design

Incorporate geographical contexts

- A sample scenario
- What we need
 - Describe the "category" of a place
- What we have
 - Google Place API
 - ▶ (Lat, Lon, Type, Search range) ⇒ Detailed info about local business
- What to do
 - # Restaurants, # Bookstores, # Shopping malls, # Parks

Geographical distribution

Parks

Arts/books/movies

Shopping malls

Homogeneous

- Why?
- Google Place API returns 20 results at most.

Refined feature design

Decrease search range

Restaurants/bars

Shopping malls

Arts/books/movies

Parks

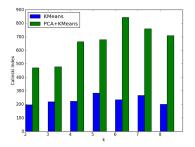
- Solution!
 - More discriminative

Refined feature design

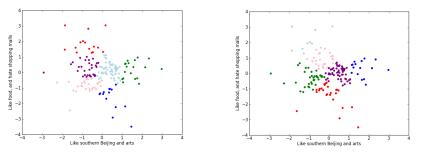
Feature

- Mean of traveling time
- Mean of traveling area
- Mean of "category" feature
- Build Bag-of-Words feature
- Normalization
 - 0-mean, 1-standard-deviation

- Problems?
 - Missing values
- Solution
 - Fill them with mean

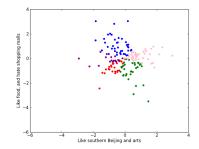

Clustering

- Approaches
 - K-Means
 - Spectral Clustering
 - ► Affinity Propagation: no cluster # required ahead
- Feature selection with PCA

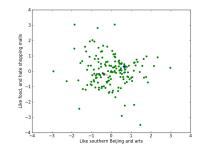


KMeans

- Calinski Index
 - Between Cluster SS/(K-1)Within Cluster SS/(N-K)
- The larger, the better
- No need to normalize



• k = 6, PCA + KMeans



- KMeans cannot give stable results
- The data is not really suitable for clustering

- Affinity Propagation thinks there should be 5 clusters
- It can provide a stable result

 Spectral Clustering provide non-sense results: one huge cluster with tiny "outlier" clusters.

Actually a good method!

Conclusion

- What I did
 - Iterative feature design
 - For spatial-temporal data
 - Incorporate rich context of geographical data
 - Feature selection
 - Improve clustering performance
 - Clustering approaches comparison
- What I learned
 - LOOK INTO THE DATA! IN EVERY STEP!
 - Discover and solve problem efficiently
 - Solid practice
 - Ask why
 - Dig internal insights
 - Detect bugs

Thank you

- Slides and more demos available at
 - http://lab.grapeot.me/
- Discuss and contact
 - https://www.facebook.com/grapeot/